- gewöhnliche Logarithmen
- обыкновенные логарифмы
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Logarithmus — Log|a|rịth|mus auch: Lo|ga|rịth|mus 〈m.; , rịth|men; Abk.: log; Math.〉 diejenige Zahl b, mit der man in der Gleichung ab = c die Zahl a potenzieren muss, um die Zahl c zu erhalten ● dekadischer Logarithmus 〈〉 der Logarithmus bei dem a = 10… … Universal-Lexikon
Systemtheorie (Ingenieurwissenschaften) — Der Begriff der Systemtheorie wird in verschiedenen wissenschaftlichen Disziplinen angewendet und hat in Bezug auf den Primärbegriff System keine einheitliche Bedeutung. Systeme können sich als physikalische, ökologische, ökonomische, soziale… … Deutsch Wikipedia
Arganddiagramm — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Gauß-Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Imaginärteil — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Irreelle Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahl — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass die Gleichung x2 + 1 = 0 lösbar wird. Dies gelingt durch Einführung einer neuen Zahl i mit der Eigenschaft i2 = − 1. Diese Zahl i wird als imaginäre Einheit… … Deutsch Wikipedia
Komplexe Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahlenebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexes Argument — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia